190 research outputs found

    Health-services utilisation amongst older persons during the last year of life: A population-based study

    Get PDF
    © 2018 The Author(s). Background: Accurate population-based data regarding hospital-based care utilisation by older persons during their last year of life are important in health services planning. We investigated patterns of acute hospital-based service use at the end of life, amongst older decedents in New South Wales (NSW), Australia. Methods: Data from all persons aged ≥70 years who died in the state of NSW Australia in 2007 were included. Several measures of hospital-based service utilisation during the last year of life were assessed from retrospectively linked data comprising data for all registered deaths, cause of death, hospital care during the last year of life (NSW Admitted Patient Data Collection [APDC] and Emergency Department [ED] Data Collection [EDDC]), and the NSW Cancer Registry. Results: Amongst 34,556 decedents aged ≥70 years, 82% (n = 28,366) had ≥1 hospitalisation during the last year of life (median 2), and 21% > 3 hospitalisations. Twenty-five percent (n = 5485) of decedents attended ED during the last week of life. Overall, 21% had a hospitalisation > 30 days in the last year of life, and 7% spent > 3 months in hospital; 79% had ≥1 ED attendance, 17% > 3. Nine percent (n = 3239) spent time in an intensive care unit. Fifty-three percent (n = 18,437) died in an inpatient setting. Hospital records had referenced palliative care for a fifth (7169) of decedents. Adjusting for age group, sex, place of residence, area-level socioeconomic status, and cause of death, having > 3 hospitalisations during the last year of life was more likely for persons dying from cancer (35% versus 16% non-cancer deaths, adjusted odds ratio [aOR] 2.33), 'younger' old decedents (29% for age 70-79 and 20% for age 80-89 versus 11% for 90+, aOR 2.42 and 1.77 respectively) and males (25% versus 17% females, aOR 1.38). Patterns observed for other hospital-based service use were similar. Conclusions: This population-based study reveals high use of hospital care among older persons during their last year of life, although this decreased with increasing older age, providing important data to inform health services planning for this population, and highlighting aspects requiring further study

    Infrared Multiple Photon Dissociation Action Spectroscopy and Theoretical Studies of Diethyl Phosphate Complexes: Effects of Protonation and Sodium Cationization on Structure

    Get PDF
    The gas-phase structures of deprotonated, protonated, and sodium-cationized complexes of diethyl phosphate (DEP) including [DEP − H]−, [DEP + H]+, [DEP + Na]+, and [DEP − H + 2Na]+ are examined via infrared multiple photon dissociation (IRMPD) action spectroscopy using tunable IR radiation generated by a free electron laser, a Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR MS) with an electrospray ionization (ESI) source, and theoretical electronic structure calculations. Measured IRMPD spectra are compared to linear IR spectra calculated at the B3LYP/6-31G(d,p) level of theory to identify the structures accessed in the experimental studies. For comparison, theoretical studies of neutral complexes are also performed. These experiments and calculations suggest that specific geometric changes occur upon the binding of protons and/or sodium cations, including changes correlating to nucleic acid backbone geometry, specifically P–O bond lengths and ∠OPO bond angles. Information from these observations may be used to gain insight into the structures of more complex systems, such as nucleotides and solvated nucleic acids

    Ovine pedomics : the first study of the ovine foot 16S rRNA-based microbiome

    Get PDF
    We report the first study of the bacterial microbiome of ovine interdigital skin based on 16S rRNA by pyrosequencing and conventional cloning with Sanger-sequencing. Three flocks were selected, one a flock with no signs of footrot or interdigital dermatitis, a second flock with interdigital dermatitis alone and a third flock with both interdigital dermatitis and footrot. The sheep were classified as having either healthy interdigital skin (H), interdigital dermatitis (ID) or virulent footrot (VFR). The ovine interdigital skin bacterial community varied significantly by flock and clinical condition. The diversity and richness of operational taxonomic units was greater in tissue from sheep with ID than H or VFR affected sheep. Actinobacteria, Bacteriodetes, Firmicutes and Proteobacteria were the most abundant phyla comprising 25 genera. Peptostreptococcus, Corynebacterium and Staphylococcus were associated with H, ID and VFR respectively. Sequences of Dichelobacter nodosus, the causal agent of ovine footrot, were not amplified due to mismatches in the 16S rRNA universal forward primer (27F). A specific real time PCR assay was used to demonstrate the presence of D. nodosus which was detected in all samples including the flock with no signs of ID or VFR. Sheep with ID had significantly higher numbers of D. nodosus (104-109 cells/g tissue) than those with H or VFR feet

    Position of the Third Na+ Site in the Aspartate Transporter GltPh and the Human Glutamate Transporter, EAAT1

    Get PDF
    Glutamate transport via the human excitatory amino acid transporters is coupled to the co-transport of three Na+ ions, one H+ and the counter-transport of one K+ ion. Transport by an archaeal homologue of the human glutamate transporters, GltPh, whose three dimensional structure is known is also coupled to three Na+ ions but only two Na+ ion binding sites have been observed in the crystal structure of GltPh. In order to fully utilize the GltPh structure in functional studies of the human glutamate transporters, it is essential to understand the transport mechanism of GltPh and accurately determine the number and location of Na+ ions coupled to transport. Several sites have been proposed for the binding of a third Na+ ion from electrostatic calculations and molecular dynamics simulations. In this study, we have performed detailed free energy simulations for GltPh and reveal a new site for the third Na+ ion involving the side chains of Threonine 92, Serine 93, Asparagine 310, Aspartate 312, and the backbone of Tyrosine 89. We have also studied the transport properties of alanine mutants of the coordinating residues Threonine 92 and Serine 93 in GltPh, and the corresponding residues in a human glutamate transporter, EAAT1. The mutant transporters have reduced affinity for Na+ compared to their wild type counterparts. These results confirm that Threonine 92 and Serine 93 are involved in the coordination of the third Na+ ion in GltPh and EAAT1

    Free energies of binding of R- and S-propranolol to wild-type and F483A mutant cytochrome P450 2D6 from molecular dynamics simulations

    Get PDF
    Detailed molecular dynamics (MD) simulations have been performed to reproduce and rationalize the experimental finding that the F483A mutant of CYP2D6 has lower affinity for R-propranolol than for S-propranolol. Wild-type (WT) CYP2D6 does not show this stereospecificity. Four different approaches to calculate the free energy differences have been investigated and were compared to the experimental binding data. From the differences between calculations based on forward and backward processes and the closure of thermodynamic cycles, it was clear that not all simulations converged sufficiently. The approach that calculates the free energies of exchanging R-propranolol with S-propranolol in the F483A mutant relative to the exchange free energy in WT CYP2D6 accurately reproduced the experimental binding data. Careful inspection of the end-points of the MD simulations involved in this approach, allowed for a molecular interpretation of the observed differences

    A distinct bacterial dysbiosis associated skin inflammation in ovine footrot

    Get PDF
    Ovine footrot is a highly prevalent bacterial disease caused by Dichelobacter nodosus and characterised by the separation of the hoof horn from the underlying skin. The role of innate immune molecules and other bacterial communities in the development of footrot lesions remains unclear. This study shows a significant association between the high expression of IL1β and high D. nodosus load in footrot samples. Investigation of the microbial population identified distinct bacterial populations in the different disease stages and also depending on the level of inflammation. Treponema (34%), Mycoplasma (29%) and Porphyromonas (15%) were the most abundant genera associated with high levels of inflammation in footrot. In contrast, Acinetobacter (25%), Corynebacteria (17%) and Flavobacterium (17%) were the most abundant genera associated with high levels of inflammation in healthy feet. This demonstrates for the first time there is a distinct microbial community associated with footrot and high cytokine expression

    Epigenetic management of major psychosis

    Get PDF
    Epigenetic mechanisms are thought to play a major role in the pathogenesis of the major psychoses (schizophrenia and bipolar disorder), and they may be the link between the environment and the genome in the pathogenesis of these disorders. This paper discusses the role of epigenetics in the management of major psychosis: (1) the role of epigenetic drugs in treating these disorders. At present, there are three categories of epigenetic drugs that are being actively investigated for their ability to treat psychosis: drugs inhibiting histone deacetylation; drugs decreasing DNA methylation; and drugs targeting microRNAs; and (2) the role of epigenetic mechanisms in electroconvulsive therapy in these disorders

    The Role of Methylation in the Intrinsic Dynamics of B- and Z-DNA

    Get PDF
    Methylation of cytosine at the 5-carbon position (5mC) is observed in both prokaryotes and eukaryotes. In humans, DNA methylation at CpG sites plays an important role in gene regulation and has been implicated in development, gene silencing, and cancer. In addition, the CpG dinucleotide is a known hot spot for pathologic mutations genome-wide. CpG tracts may adopt left-handed Z-DNA conformations, which have also been implicated in gene regulation and genomic instability. Methylation facilitates this B-Z transition but the underlying mechanism remains unclear. Herein, four structural models of the dinucleotide d(GC)5 repeat sequence in B-, methylated B-, Z-, and methylated Z-DNA forms were constructed and an aggregate 100 nanoseconds of molecular dynamics simulations in explicit solvent under physiological conditions was performed for each model. Both unmethylated and methylated B-DNA were found to be more flexible than Z-DNA. However, methylation significantly destabilized the BII, relative to the BI, state through the Gp5mC steps. In addition, methylation decreased the free energy difference between B- and Z-DNA. Comparisons of α/γ backbone torsional angles showed that torsional states changed marginally upon methylation for B-DNA, and Z-DNA. Methylation-induced conformational changes and lower energy differences may contribute to the transition to Z-DNA by methylated, over unmethylated, B-DNA and may be a contributing factor to biological function

    Noncovalent Interactions of Hydrated DNA and RNA Mapped by 2D-IR Spectroscopy

    Full text link
    Biomolecules couple to their aqueous environment through a variety of noncovalent interactions. Local structures at the surface of DNA and RNA are frequently determined by hydrogen bonds with water molecules, complemented by non-specific electrostatic and many-body interactions. Structural fluctuations of the water shell result in fluctuating Coulomb forces on polar and/or ionic groups of the biomolecular structure and in a breaking and reformation of hydrogen bonds. Two-dimensional infrared (2D-IR) spectroscopy of vibrational modes of DNA and RNA gives insight into local hydration geometries, elementary molecular dynamics, and the mechanisms behind them. In this chapter, recent results from 2D-IR spectroscopy of native and artificial DNA and RNA are presented, together with theoretical calculations of molecular couplings and molecular dynamics simulations. Backbone vibrations of DNA and RNA are established as sensitive noninvasive probes of the complex behavior of hydrated helices. The results reveal the femtosecond fluctuation dynamics of the water shell, the short-range character of Coulomb interactions, and the strength and fluctuation amplitudes of interfacial electric fields.Comment: To appear as Chapter 8 of Springer Series in Optical Sciences: Coherent Multidimensional Spectroscopy -- Editors: Cho, Minhaeng (Ed.), 201

    Using hippocampal microRNA expression differences between mouse inbred strains to characterise miRNA function

    Get PDF
    Micro-RNAs (miRNAs) are short, single-stranded, noncoding RNAs that are involved in the regulation of protein-coding genes at the level of messenger RNA (mRNA). They are involved in the regulation of numerous traits, including developmental timing, apoptosis, immune function, and neuronal development. To better understand how the expression of the miRNAs themselves is regulated, we looked for miRNA expression differences among four mouse inbred strains, A/J, BALB/cJ, C57BL/6J, and DBA/2J, in one tissue, the hippocampus. A total of 166 miRNA RT-PCR assays were used to screen RNA pools for each strain. Twenty miRNA species that were markedly different between strains were further investigated using eight individual samples per strain, and 11 miRNAs showed significant differences across strains (p < 0.05). This is the first observation of miRNA expression differences across inbred mice strains. We conducted an in silico correlation analysis of the expression of these differentially expressed miRNAs with phenotype data and mRNA expression to better characterise the effects of these miRNAs on both phenotype and the regulation of mRNA expression. This approach has allowed us to nominate miRNAs that have potential roles in anxiety, exploration, and learning and memory
    corecore